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Abstract

Background: Accurate methods of HIV incidence determination are critically needed to monitor the epidemic and determine
the population level impact of prevention trials. One such trial, Project Accept, a Phase III, community-randomized trial,
evaluated the impact of enhanced, community-based voluntary counseling and testing on population-level HIV incidence. The
primary endpoint of the trial was based on a single, cross-sectional, post-intervention HIV incidence assessment.

Methods and Findings: Test performance of HIV incidence determination was evaluated for 403 multi-assay algorithms
[MAAs] that included the BED capture immunoassay [BED-CEIA] alone, an avidity assay alone, and combinations of these
assays at different cutoff values with and without CD4 and viral load testing on samples from seven African cohorts (5,325
samples from 3,436 individuals with known duration of HIV infection [1 month to .10 years]). The mean window period
(average time individuals appear positive for a given algorithm) and performance in estimating an incidence estimate (in
terms of bias and variance) of these MAAs were evaluated in three simulated epidemic scenarios (stable, emerging and
waning). The power of different test methods to detect a 35% reduction in incidence in the matched communities of Project
Accept was also assessed. A MAA was identified that included BED-CEIA, the avidity assay, CD4 cell count, and viral load that
had a window period of 259 days, accurately estimated HIV incidence in all three epidemic settings and provided sufficient
power to detect an intervention effect in Project Accept.

Conclusions: In a Southern African setting, HIV incidence estimates and intervention effects can be accurately estimated
from cross-sectional surveys using a MAA. The improved accuracy in cross-sectional incidence testing that a MAA provides is
a powerful tool for HIV surveillance and program evaluation.
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Introduction

Accurate methods for estimating HIV incidence are needed to

monitor the epidemic and evaluate interventions for HIV

prevention [1]. In clinical trials, HIV incidence is usually assessed

by enrolling HIV-uninfected individuals and following them over

time to detect HIV acquisition. An alternate approach is to assess

HIV incidence by analyzing specimens from cross-sectional

surveys without longitudinal follow-up [2]. This approach may

be needed for evaluation of population-level interventions for HIV

prevention, particularly when HIV testing is part of a combination

prevention strategy [3,4]. In this report, we describe the

development of methods that were used to analyze HIV incidence

in a large, Phase III community randomized trial: National

Institute of Mental Health (NIMH) Project Accept (HIV

Prevention Trials Network 043 [HPTN 043]) [5]. Project Accept

is one of the largest randomized, controlled trial performed to

date, and is the first randomized controlled trial with a primary

study endpoint based solely on cross-sectional estimation of HIV

incidence.

Project Accept evaluated the impact of integrated behavioral

interventions on HIV incidence in 48 paired communities (34 in

Africa, 14 in Thailand) [16]. Control communities received

standard, clinic-based, voluntary counseling and testing services;

intervention communities received enhanced, community-based

voluntary counseling and testing services. After a 3-year interven-

tion period, samples were collected from individuals in the

communities (aged 18 to 32 years) in a single cross-sectional

survey. When the trial was designed, the study plan was to estimate

HIV incidence using the BED capture immunoassay (BED-CEIA,

Calypte Biomedical Corporation, Lake Oswego, OR, USA) [6].

That approach was not used because the BED-CEIA was later

found to overestimate incidence in many settings [7].

In this report, we describe the laboratory and statistical analysis

that was used to identify an alternate testing strategy for HIV

incidence estimation in Project Accept. The testing strategies that

were evaluated used multiple biomarkers to assess HIV incidence

[8]. This approach was based on recent success using a multi-assay

algorithm (MAA) to estimate HIV incidence in populations in the

United States (clade B settings) [9–11]. That MAA combines

serologic assays (the BED-CEIA and an antibody avidity assay)

with non-serologic biomarkers (CD4 cell count and HIV viral

load) to identify individuals who were likely to have been recently

infected at the time of sample collection (referred to in this report

as MAA positive). In Project Accept, because HIV prevalence in

the communities in Thailand was low (,1%, [12]), data from

Thailand were not included in the primary endpoint analysis.

Therefore, we focused on identifying a MAA that could be used to

estimate incidence in the African communities of the trial, using

validation samples obtained from seven African cohorts.

Development of methods for cross-sectional HIV incidence

estimation is challenging for several reasons. First, an assay or

MAA must have a suitable mean window period; this term refers

to the average period of time that individuals are identified as

positive by a specific assay or MAA. If the window period is too

short, fewer individuals will be classified as positive, resulting in

higher variance and lower precision of incidence estimates,

reducing the power to determine an intervention effect. Con-

versely, if the window period is too long, the precision of incidence

estimates will be reduced because of high bias; furthermore, if too

many individuals with long-term infection (e.g, infected .1 year)

test positive by an assay or MAA, the incidence estimates will not

reflect the current epidemic. Bias is reduced when the probability

of being classified as positive approaches zero as the time since

infection increases [13,14]. The performance of serologic assays

used for cross-sectional incidence estimation may also be affected

by HIV viral load, frequency and duration of antiretroviral

treatment (ART), the stage of HIV disease, HIV subtype, and race

[15–21]. Finally, the performance of assays and MAAs for

incidence estimation varies by the stage of the epidemic. For

example, a given test method may perform well in an emerging

epidemic with high incidence, but may not perform well in waning

epidemic where incidence is low and many individuals have

advanced HIV disease. In this report, we describe the laboratory

and statistical methods used to identify a MAA for incidence

analysis in Project Accept.

Methods

Samples used for analysis
Samples obtained from seven African cohort studies and clinical

trials (Table 1) were used for validation. Samples were selected

based on availability of stored plasma, known infecting subtype,

known duration of infection (known date of a prior positive and/or

negative HIV test), and available CD4 cell count data from the

time of sample collection. Of the samples that did not have a

known prior HIV negative time point, 99.3% were from

individuals who were HIV seropositive for .1 year and 52.7%

were known to be from individuals who were HIV seropositive for

.2 years. Infection times were either interval-censored (the dates

of the first positive and the last negative HIV tests were available)

or right-censored (the date of the last negative test was unknown).

In the latter case, we assigned the 14th birthday as the date of the

last negative test and treated the infection time as interval-

censored. Interval-censored infection times were randomly

imputed in the simulations. For almost all of the samples, the

infection time was generated from the uniform distribution

between the last negative and first positive test dates. However,

for 147 samples from subjects who had another visit following the

current sample date, the infection time was generated from a
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posterior Weibull density truncated to the interval between the last

negative and first positive test dates. We assumed a Weibull

distribution on the survival of HIV-infected subjects and a uniform

prior distribution of the infection time, and calculated the posterior

distribution of the infection time given the date of the last known

visit. We used the Weibull survival distribution with the shape

parameter 1.856 and rate parameter 4358.5 days. The truncated

Weibull density puts more weight on the more recent infection

times if the subject is known to have survived for a long time after

the first positive test date and so improves the precision of the

imputed infection times compared to the uniform distribution.

More details on these methods are presented elsewhere [22].

Samples from Botswana, Malawi, South Africa, and Zimbabwe

were assumed to come from individuals infected with HIV subtype

C [23]. The HIV subtypes of samples from Uganda and Kenya

were determined previously [24–28].

Serologic testing
Samples were tested by the BED-CEIA; [6] samples were run in

duplicate and the average normalized optical density (OD-n) value

was used for analysis. Antibody avidity was measured using a

modified version of the Genetic Systems 1/2+O ELISA (BioRad,

Hercules, CA) [29]. For this assay, duplicate sample aliquots were

diluted 1:10 and incubated at 4uC for 30 minutes (initial antibody-

binding step). Samples were then incubated for 30 minutes at

37uC with or without the chaotropic agent, diethylamine (antibody

disassociation step). The avidity index (AI) was calculated as

follows: AI = [optical density of the diethylamine-treated well]/

[optical density of the non-treated well] 6100.

HIV viral load testing
If a viral load result was not available, viral load testing was

performed using the Amplicor HIV-1 Monitor test version 1.5

(Roche Diagnostics, Indianapolis, IN). Viral load testing was only

performed for samples that had a BED-CEIA result ,1.5 OD-n,

an AI ,90%, and a CD4 cell count .150 cells/mm3.

Statistical methods
To compare the performance of various testing algorithms, we

constructed 403 MAAs that included one or more of the following

assays: BED-CEIA, the avidity assay, CD4 cell count, and HIV

viral load. The ranges of cutoffs used for each assay were as

follows: BED-CEIA: 0.5 to 1.5 OD-n (steps of 0.1 OD-n); the

avidity assay: 30% to 90% (steps of 10% AI); CD4 cell count: 150,

200, and 250 cells/mm3; all MAAs that included HIV viral load

used a cutoff of .400 copies/mL. The MAAs included the BED-

CEIA alone, the avidity assay alone, or these two assays in

combination with or without inclusion of CD4 cell count; HIV

viral load was only included for MAAs that included a CD4 cell

count with a cutoff .200 cells/mm3.

The mean window period for each MAA was calculated by

integrating estimated sensitivity of the MAA, as described [9], with

the following caveat: the maximum duration of HIV infection was

assumed to be 12 years [22]. The performance of the MAAs for

estimating HIV incidence was evaluated in simulated populations

with 10% prevalence using three epidemic scenarios (emerging,

stable, and waning epidemics). Detailed descriptions of the

statistical methods and simulation exercises are described

elsewhere [22], The three scenarios were simulated using data

from the sample set described in Table 1. For each scenario, data

from 200 individuals with different durations of HIV infection

were repeatedly sampled. The bias, variance, and root mean

square error (RMSE) of the incidence estimate for each of the 403

MAAs was determined for each of the three scenarios. The RMSE

measures the overall precision of estimated incidence by combin-

ing the bias and variance. The same performance measures were

used to evaluate incidence estimates calculated from simulated 6-

month and one-year follow-up assessments. In the final evaluation,

the data were used to simulate the capacity of selected MAAs to

accurately estimate a difference in HIV incidence in the control

and intervention communities of Project Accept [22], Finally, the

power to detect a 35% decrease in incidence and coverage of

confidence intervals for the intervention effect were determined for

a stable epidemic setting. The results were compared to simulated

intervention effect estimates obtained by 6-month follow-up.

Human subjects protection
Written informed consent was obtained from study participants

and all studies were reviewed and approved by relevant

institutional review boards. The study for cross sectional incidence

testing on stored study samples was approved by the institutional

review board of the Johns Hopkins University. The primary

studies for the collection of the samples evaluated were approved

by the University of KwaZulu-Natal Biomedical Research Ethics

Committee, Medical Research Council of Zimbabwe, Family

Health International Protection of Human Subjects Committee,

Table 1. Samples used for analysis.

Gender Subtype A Subtype C Subtype D All subtypes

Cohort a (% female) # subjects # samples # subjects # samples # subjects # samples # subjects # samples

CAPRISA 100 0 0 97 552 0 0 97 552

FHI/Uganda 100 46 225 1 3 23 197 70 425

FHI/Zimbabwe 100 0 0 132 339 0 0 132 339

HPTN 039 100 0 0 45 135 0 0 45 135

Partners 64.3 63 155 563 625 18 37 644 817

PEPI 100 0 0 1,663 1,664 0 0 1,663 1,664

Rakai 62.9 254 431 18 37 513 925 785 1,393

Total 84.8 363 811 2,519 3,355 554 1,159 3,436 5,325

aSamples were obtained from the following clinical cohorts (see Methods): CAPRISA: the CAPRISA 004 Study/TRAPS [32]; FHI/Uganda and FHI/Zimbabwe: the FHI360
Hormonal Contraception and HIV (HC-HIV) Trial [24]; HPTN 039: the HIV Prevention Trials Network 039 Trial [33]; Partners: the Partners in Prevention HSV/HIV
Transmission Study [34]; PEPI: the Pre-Exposure Prophylaxis in Infants – Malawi Trial [35]; Rakai: the Rakai Health Sciences Program [36].
doi:10.1371/journal.pone.0078818.t001

Evaluation of HIV Incidence in Southern Africa

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78818



the South African Medicines Control Council, the institutional

review board at the University of Malawi, Ethics Committee of the

Uganda Virus Research Institute and the Committee for Human

Research at Johns Hopkins University and the University of

Washington Human Subjects Review Committee.

Results

Performance of the BED-CEIA and avidity assay in
subtypes A, C, and D

Because HIV subtype can affect performance of the BED-CEIA

and avidity assays [18,30], we first considered the potential impact

of HIV subtype on incidence estimation in Project Accept which

was conducted in South Africa, Zimbabwe, and Tanzania. Most

HIV infections in South Africa and Zimbabwe are subtype C,

while Tanzania has three prevalent subtypes: A, C, and D [23]. To

evaluate incidence algorithms for use in Project Accept, we

obtained validation samples from seven African studies conducted

in countries where subtypes A, C, and D are prevalent (Table 1).

This sample set included 5,325 samples from 3,436 individuals

with known duration of HIV infection (from 1 month to

.10 years, see Methods).

First, we evaluated the performance of the BED-CEIA and

avidity assay as a function of duration of infection for subtypes A,

C, and D (Figure 1). The mean window period for each assay and

each subtype were obtained using the standard assay cutoffs

(Table 2). For all three subtypes, the mean window period was

longer for the BED-CEIA alone than for the avidity assay alone.

For both assays, the mean window periods varied considerably

among subtypes and were longest for subtype D (.2.5 years for

the BED-CEIA, .1.5 years for the avidity assay). We also

compared the proportion of individuals infected .2 years who

had BED-CEIA results ,0.8 OD-n or avidity assay results ,40%

AI (Table 2). Previous reports indicated that the frequency of

subtype D in Tanzania was low [12,23]; this was confirmed by

subtyping a subset of the samples from Project Accept [31].

Because subtype D infections were not likely to have a significant

impact on HIV incidence estimates in Project Accept, subsequent

analyses did not include subtype D validation samples. After

removing the subtype D samples, the validation sample set

included 4,166 samples from 2,882 individuals (median age:

27.8 years, interquartile range [IQR]: 24.1 to 32.5 years; 88%

women). The performance of the BED-CEIA and the avidity assay

was similar for subtypes A and C (Figure 1, Table 2).

Performance of MAAs for identifying individuals with
recent HIV infection

We evaluated the performance of 403 MAAs (see Methods).

The mean window period for each MAA is presented in Table S1.

Below, we present more detailed information for four of the testing

algorithms: the BED-CEIA alone (using the standard assay cutoff

Figure 1. BED-CEIA and avidity assay results for HIV subtypes A, C, and D. Samples from the validation sample set were analyzed using the
BED-CEIA (Panels A–C) and the avidity assay (Panels D–F). Results are shown for each assay for subtypes A, C, and D as a function of duration of HIV
infection (years after HIV seroconversion). Data are shown for 50 randomly-selected samples for each 6-month interval after seroconversion. The HIV
incidence testing algorithms evaluated in this report only included algorithms with BED-CEIA results #1.5 OD-n or avidity results #90% AI (dashed
lines).
doi:10.1371/journal.pone.0078818.g001
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of 0.8 OD-n), the avidity assay alone (using the standard assay

cutoff of 40% AI)], and two MAAs that include the BED-CEIA,

the avidity assay, CD4 cell count and viral load. One of these two

MAAs was shown to accurately estimate HIV incidence in subtype

B settings (BED-CEIA ,1.0 OD-n + AI ,80% + CD4 cell count

.200 cells/mm3 + viral load .400 copies/mL) when testing the

samples at the end of follow-up in three clinical studies and

comparing the cross-sectional incidence estimates to the incidence

observed during study follow-up [9–11]. Based on its performance

described below, the other MAA was ultimately selected for

endpoint analysis in Project Accept (BED-CEIA ,1.2 OD-n + AI

,90% + CD4 cell count .200 cells/mm3 + viral load .400

copies/mL) [22].

The proportion of samples positive for each of the four testing

algorithms was determined as a function of duration of infection

(Figure 2). Consistent with results shown in Figure 1, a high

proportion of individuals infected .2 years were positive by the

BED-CEIA alone (7.9%). The other three testing approaches

identified a lower proportion of these long-term infections as

positive (1.9% for the avidity assay, 0.8% and 1.5% for the 4-assay

MAAs). For individuals infected ,6 months, 68.5% were positive

using the avidity assay alone, 75.6% were positive using the MAA

that was previously optimized for incidence estimation in clade B

epidemics, and 81.5% were positive using the MAA that was

ultimately selected for analysis of the Project Accept endpoint. The

MAA that was ultimately selected for use in Project Accept

identified 27.5% of those infected 0.5–1 year and 8.8% of those

infected 1–2 years as positive.

Performance of MAAs for estimating HIV incidence in
different epidemic scenarios

The overall performance of incidence assays and MAAs is

affected by the distribution of infection times in a population.

Because the stage of the HIV epidemic in the Project Accept

communities was not known, we evaluated the performance of the

403 MAAs for estimating HIV incidence in three simulated

epidemic scenarios: emerging, stable, and waning epidemics.

These scenarios were constructed by randomly selecting samples

from the validation data set so that the distribution of durations of

infection corresponded to the desired scenario (see Methods,

Figure 3). In the stable epidemic, 5.5% of individuals were infected

,0.5 years, 13.3% were infected 0.5–2 years, 29.0% were

infected 2–5 years, 33.4% were infected 5–10 years, and 17.8%

were infected .10 years. For the emerging epidemic, these

percentages were 17.7%, 42.9%, 38.4%, and 1.0%, respectively;

for the waning epidemic, these percentages were 0.7%, 1.6%,

44.0%, and 53.7%, respectively.

The bias, variance, and RMSE were calculated for each MAA

in the three epidemic scenarios. Results obtained using the BED-

CEIA alone, the avidity assay alone, the best performing 2-assay

MAA (BED-CEIA ,0.8 OD-n + AI ,70%) and the two 4-assay

MAAs described above are shown in Table 3; results for all 403

MAAs are shown in Supplemental Table 1. The bias reflects the

difference between the estimated incidence and the true incidence.

Among the 403 MAAs, the bias ranged from 26.1% to 263.3%

in the emerging epidemic scenario, from 29.2% to 226.6% in the

stable epidemic scenario, and from 40.6% to 346.7% in the

waning epidemic scenario. In the stable and emerging epidemic

scenarios, the bias was lower for MAAs that used serologic assays

in combination with CD4 cell count and viral load (Table S1).

The RMSE ranged from 0.20 to 1.01 in the emerging epidemic

scenario, from 0.28 to 0.55 in the stable epidemic scenario, and

from 0.65 to 1.50 in the waning epidemic scenario. The best

performing two assay MAA was ranked 186 out of the 403
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algorithms tested. Though this MAA was comparable to the best

3- and 4-assay MAAs in the waning epidemic scenario, it

performed poorly in stable and emerging scenarios, In the

emerging and waning epidemic scenarios, the lowest precision

values (highest RMSEs) were obtained using the BED-CEIA alone

or the avidity assay alone.

Finally, we compared the capacity of the four testing algorithms

to accurately detect a 35% difference in HIV incidence in the

control and intervention communities of Project Accept (Table 4)

[22]. The intervention effect was accurately estimated by both of

the 4-assay MAAs, but was underestimated using BED-CEIA

alone or the avidity assay alone. The percentage of 95%

confidence intervals that covered the true intervention effect was

.93% for both 4-assay MAAs, but was unacceptably low for the

BED-CEIA alone or the avidity assay alone. The MAA that was

ultimately selected for primary endpoint analysis in Project Accept

(BED-CEIA ,1.2 OD-n + avidity index ,90% + CD4 cell count

.200 cells/mm3 + viral load .400 copies/mL) provided the

largest power for detecting a 35% reduction in HIV incidence and

had minimal bias in estimating incidence across differing epidemic

scenarios. This MAA had better precision, power, and negligible

bias compared to a simulated 6-month follow-up study using the

same validation sample set. In a separate simulation, we showed

that both of the 4-assay MAAs maintained the required probability

of type I error, provided that the scenarios in the paired

communities were the same.

Figure 2. Proportion of samples classified as positive using the BED-CEIA alone, the avidity assay alone, and two MAAs. Subtype A
and C samples were analyzed using the BED-CEIA alone (using the standard assay cutoff of 0.8 OD-n, black bars), the avidity assay alone (using the
standard assay cutoff of 40% AI, dark grey bars), and two MAAs that included multiple biomarkers, (BED-CEIA ,1.0 OD-n + AI ,80% + CD4 cell count
.200 cells/mm3 + viral load .400 copies/mL, medium grey bars; BED-CEIA ,1.2 OD-n + AI ,90% + CD4 cell count .200 cells/mm3 + viral load .400
copies/mL, light grey bars). For each test method, the percentage of samples classified as positive was determined as a function of the duration of
HIV infection (years after HIV seroconversion). N indicates the number of samples analyzed for each time period (e.g., 0–0.5 years after
seroconversion).
doi:10.1371/journal.pone.0078818.g002

Figure 3. Simulated epidemic scenarios. HIV incidence testing algorithms were assessed using three simulated epidemic scenarios: an emerging
epidemic (black bars), a stable epidemic (dark grey bars), and a waning epidemic (light grey bars). The plot shows the percentage of HIV-positive
samples included in each scenario for different time periods (years after HIV seroconversion).
doi:10.1371/journal.pone.0078818.g003
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Discussion

We evaluated the performance of incidence assays and MAAs

using data from a large set of validation samples from Africa.

These samples were from individuals with a broad range of

infection times who had CD4 cell count data available from the

time of sample collection. We found that testing algorithms that

included multiple assays were superior to single serologic assays;

the incidence estimates obtained using multiple assays had lower

bias and better precision. We used simulation exercises to

demonstrate that the 4-assay MAA that was selected for use in

Project Accept provided a more precise estimate of the ratio

between incidence in the intervention and control communities

than would have been obtained by following a cohort for

seroconversion over a 6-month period.

Our findings demonstrate the importance of including samples

from very long-term infections when validating methods for

cross-sectional HIV incidence estimation. Using a sample set that

included individuals infected .10 years, the mean window period

for the BED-CEIA was 1.63 years, which is approximately three

times longer than the mean window period previously reported for

this assay [18]. We found that the BED-CEIA and avidity assay

frequently identified individuals infected .2 years as positive. This

effect was most pronounced for subtype D. Previous studies have

shown that misclassification of subtype D samples using these

assays reflects differences in the serologic response to subtype D

infection compared to subtype A infection; differences in the

sequences of subtype D viruses in the region corresponding to the

BED-CEIA target antigen also negatively affect assay performance

[30]. We recommend against using the BED-CEIA or Bio-Rad

avidity assays for cross-sectional incidence estimation in popula-

tions that include a substantial proportion of subtype D-infected

individuals. Additional studies should be performed using different

test methods [e.g., different assay (s) and/or different cutoff (s)] to

Table 3. Accuracy of incidence estimates obtained using the BED-CEIA alone, the avidity assay alone, a two-assay multi assay
algorithm (MAA), and two four-assay MAAs in three epidemic scenarios*.

Epidemic scenario

Stable epidemic Emerging epidemic Waning epidemic

Window Period (annual incidence 1.29%) (annual incidence 4.18%) (annual incidence 0.16%)

Algorithm (years) Rank Rel. bias RMSE Rank Rel. bias RMSE Rank Rel. bias RMSE

6-month follow-up – – 27.9% 0.32 – 25.7% 0.17 – 18.6% 0.51

BED ,0.8 1.63 95 223.2% 0.32 396 249.9% 0.70 396 221.4% 1.19

AI ,40 0.67 339 224.5% 0.42 390 237.0% 0.49 390 149.7% 1.06

BED ,0.8, AI ,70 0.67 257 220.2% 0.38 309 225.4% 0.33 29 50.0% 0.71

BED ,1.0, AI ,80,
CD4.200, VL.400

0.56 125 29.9% 0.33 7 213.1% 0.21 20 49.0% 0.71

BED ,1.2, AI ,90,
CD4.200, VL.400

0.71 23 211.4% 0.29 91 217.6% 0.24 78 64.2% 0.75

*MAA: multi-assay algorithm; BED-CEIA: BED capture immunoassay (results expressed as normalized optical density units); AI: avidity index (results expressed as a
percentage); CD4: CD4 cell count (results expressed as cells/mm3); VL: viral load (results expressed as HIV RNA copies/mL); yrs: years; Rel. bias: relative bias; RMSE: root
mean square error. The lower two rows show results for MAAs (see text); for these MAAs, individuals are classified as MAA positive if they have results for all for assays
that are below/above the cutoffs indicated.
The relative bias (in % of true incidence over 12 months) and precision of incidence estimates (expressed as the root mean square error for log incidence, RMSE) are
shown for a 6-month cohort follow-up estimator and four cross-sectional testing algorithms in three different epidemic scenarios. The ranks show the relative ranking of
each algorithm among the 403 evaluated algorithms according to precision of incidence estimation (RMSE).
doi:10.1371/journal.pone.0078818.t003

Table 4. Capacity to estimate and detect a 35% reduction in HIV incidence in the Southern African communities of Project Accept
using the BED-CEIA alone, the avidity assay alone, and two multi-assay algorithms (MAAs)*.

Algorithm

Estimated
intervention effect
(RR)

Std. error of log
estimated RR Power

Coverage of 95% confidence
intervals for RR

6-month follow-up 0.631 0.182 70.4% 94.7

BED ,0.8 0.763 0.109 68.4% 57.3

AI ,40 0.705 0.165 56.5% 88.8

BED ,1.0, AI ,80, CD4 .200, VL .400 0.653 0.169 69.7% 95.6

BED ,1.2, AI ,90, CD4 .200, VL .400 0.663 0.157 75.5% 93.1

*BED-CEIA: BED capture immunoassay (results expressed as normalized optical density units); AI: avidity assay (results expressed as a percentage, avidity index); CD4:
CD4 cell count (results expressed as cells/mm3); VL: viral load (results expressed as HIV RNA copies/mL); Std: standard; RR: relative risk.
The table shows the mean estimated intervention effect, empirical standard error of log estimated intervention effect, the power to detect the 35% difference in
incidence, and the coverage of the 95% confidence intervals obtained by a simulation study under the stable epidemic scenario. The lower two rows show results for
MAAs (see text); for these MAAs, individuals are classified as MAA positive if they have results for all for assays that are below/above the cutoffs indicated.
doi:10.1371/journal.pone.0078818.t004
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identify an effective method for cross-sectional incidence estima-

tion in subtype D endemic areas. Fortunately, the prevalence of

subtype D was low in the Tanzanian communities in Project

Accept [31]. Therefore, we felt it was reasonable to use a MAA

that was optimized for subtypes A and C for estimating incidence

in the four African sites in Project Accept.

In this report, we used a novel approach to compare the

performance of a large set of MAAs that employed different

combinations of assays and assay cutoffs in three different

simulated epidemic scenarios. The MAAs that included both

serologic assays and non-serologic biomarkers (CD4 count and

viral load) had lower bias and variance for estimating incidence

than algorithms based on a single assay. The MAA that provided

the greatest power to detect a reduction in incidence in Project

Accept used relatively high cutoffs for both the BED-CEIA (,1.2

OD-n) and the avidity assay (,90% AI), which increased the

identification of individuals infected within 1 year. Use of these

higher cutoffs for increased the frequency of misclassification,

though it was still ,1.5% for individuals infected .2 years.

HIV viral load was included in 77 of the 403 MAAs evaluated

in this study. This biomarker identifies both elite suppressors and

individuals who are virally suppressed from ART. It is important

to identify both of these groups, since viral suppression is

associated with down-regulation of the humoral immune response

to HIV infection and with increased rates of false-recent

misclassification using serologic HIV incidence assays [2]. ART

also serves as an independent surrogate for non-recent HIV

infection, since individuals with recent HIV infection are not likely

to be identified or to access ART in many settings. We recognize

that the 4-assay MAA selected for endpoint analysis in Project

Accept may misclassify some individuals on ART who are not

virally suppressed (e.g., those with low viral loads that are .400

copies/ml). This was addressed in Project Accept using a two-step

approach: first, the MAA was used to identify samples from

individuals who were likely to have had recent infection; second,

these samples were tested for the presence of antiretroviral drugs

[31]. When using antiretroviral drug testing in an HIV incidence

assessment, it is important to consider the test results in the context

of antiretroviral drug regimens that were used in the communities

at the time the incidence survey was conducted; this should take

into account use of antiretroviral drugs for HIV prevention (e.g.,

for prevention of mother-to-child transmission, where those

receiving prophylaxis may have been recently infected).

The novel approach that was used to select an optimal testing

algorithm for HIV incidence assessment in Project Accept is of

general relevance to HIV prevention trials. We demonstrate that a

large validation data set from individuals with known duration of

infection can be used to assess the performance of various testing

algorithms in terms of estimating incidence, providing estimates of

bias and precision, and comparing the cross-sectional estimates to

cohort-based estimates. We also used an empirical approach to

determine assay cutoffs that optimized the precision of cross-

sectional incidence estimates using MAAs. The methods described

in this report could be used for cross-sectional incidence

assessment in non-subtype D epidemics of Southern Africa for

HIV prevention studies, surveillance, and other purposes.

Supporting Information

Table S1 Window periods, bias, root square mean error

(RMSE) for stable, emerging and waning epidemics for 403

multi-assay algorithms (MAAs). *

*BED: BED capture immunoassay (results expressed as normal-

ized optical density units); AI: avidity assay (results expressed as a

percentage, avidity index); CD4: CD4 cell count (results expressed

as cells/mm3); VL: viral load (results expressed as HIV RNA

copies/mL); yrs: years;
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